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On magnetohydrodynamic flow in rectangular ducts: 
an extension of the Hunt-Stewartson approach 
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The Hunt-Stewartson technique of estimating fluid velocity and magnetic flux 
profiles in rectangular ducts is generalized for the entire secondary boundary 
layer. 

1. Introduction 
In  the recent literature on MHD flow in rectangular ducts with a uniform 

magnetic field imposed parallel to the electrode walls (Hunt & Stewartson 1965; 
Chiang & Lundgren 1967), boundary-layer theory is employed to obtain approxi- 
mate analytical fluid velocity and magnetic flux profiles, in the case of a strong 
magnetic field. The former approach, introduced by Hunt & Stewartson, allows 
such estima,tion in the core as well as in various boundary layers associated with 
the cell geometry. Of these, particularly important is the boundary layer adjacent 
to  the electrodes (secondary boundary layer), where the profiles are characterized 
as 

ZI, and h, are the undimensionalized velocity and induced field strength in the 
layer. X(71) is expressed as 

which is their equation (2.33). Furthermore, 

where 

Hunt k Stewartson suggested that (1.4) may be expressed in terms of some 
Gauss hypergeometric function, and confined their analysis to the limiting cases : 
11 + 0, 7 --f 1 ,  (c  - [)MB 9 1.  They obtained an analytical estimate of the flux 
deficit pertinent to MHD pump and flow meter applications. In the following, the 
Hunt-Stewartson approach for the secondary boundary layer is generalized in 
order to allow estimation of v, and h, everywhere within the layer. 
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2. A general solution of equation (1.4) 
Substitution of the variable x = s4 into the integral in (1.4) yields (31, 

I = 4~lex-~(Z+$)-l(x--l)-t~x 1 = *B($,*)2Fl(l ,f;~; -$), (2.1) 

except at  $ = 0 (7 = 1) .  One linear transformation yields the equivalent form (4),  

On account of the fundamental integral theorem for hypergeometric functions, 

(1-1)-2(1-tz)-~dt,  (2 .2)  

2 E  $ - z (  l+$)k 

The integral in (2.2) can be expressed in terms of elliptic integrals (5). Upon 
simplification and rearrangement, 

Equation (2.3) is the general solution for a in the type of duct under consideration. 

3. Computation of X 
The integral in (1.3) now implies two separate integrations, of which the first 

may be performed analytically, so as to arrive at  an incomplete gamma function 
expressible in terms of the error function. The second integral cannot be solved, 
analytically, but it may be reduced to a simpler form near terminal values of 7. 
Putting v2 = (c-lJ2M, 

where 

The integral C(v ,q)  may conveniently be computed via usual quadrature 
methods for specified values of 7 and v. Hence, the fields v& q )  and hs([, q )  can 
numerically be established when the Hartmann number (i.e. the strength of the 
external magnetic field) is known. 
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4. Discussion 
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As indicated in 9 2, a solution to (1.4) can be sought via either equivalent form 
of the hypergeometric function due to linear transformation. The original form 
2Fl(l, $; i; - @) violates the upper terminal condition a -+ 1, q j. 1, and obeys 
only the lower terminal condition CL j. 0 , ~  j. 0. It is useful, however, in offering an 
asymptotic expansion for a) small neighbourhood of 7 about zero. Since 

CL l - ( l - ~ z ) ~ ,  (0 < 7 < 0.15). (4.1) 

Equation (i. 1) is also deducible from the Hunt-Stewartson analysis. The linear 
transform equivalent ,F1[ 1, i; 2; 4 - $( 1 + +)*I yields negative values of a for 
small values of 7 and should not be used below 7 < 0.13. 

At the upper terminal value of 7, as 7 --f 1, #(k) j. 1 and 

which is, again, in agreement with the Hunt-Stewartson analysis. As a point of 
interest, a(q = 0) may directly be obtained via (2.1) regardless of asymptotic 
considerations. Since, a t  7 = 0, # = 1, 

Hence, 
8 (1-yz)tn 

lim a(7) = 1 - lim - 
7-0 77 l + 7  8 

- = 0. 

I n  figure 1 the above discussion is summarized. Consequently, when 7 + 1, 

and, when 'ti --f 0, 

Equations (4.3) and (4.4) may further be simplified for large values of v (large 
magnetic field strength), but the asymptotic formula of Hunt & Stewartson 
(2.39) is more compact for numerical calculations. 

The Hunt-Stewartson approach and its present extension do not adequately 
describe the v(g,7) fields a t  Hartmann numbers below M = 15 (Hunt, private 
communication). The only known analytical solution of the problem for any 
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arbitrary Hartmann number is that of Grinberg (1961), in terms of general- 
ized Green functions. In  weak magnetic fields, the Grinberg approach is still 
burdened by a large number of numerical integrations and matrix inversions, 
in spite of substantial simplifications of the general solution. In medium and 
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FIGURE 1. The function a(7) versus 7 in the domain 0<?1< 1. 

strong magnetic fields the hereby extended approach permits computation of the 
velocity/magnetic flux fields in a relatively simple numerical fashion aided by 
recent extensive tables on complete and incomplete elliptic integrals (Belyakov 
et aZ. 1965). 
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